Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Surg ; 8: 764450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970590

RESUMO

Objectives: A sufficient histological evaluation is a key pillar in oncological treatment, especially in situations of cancer of unknown primary. CO2 laser technology is used in clinical routine of soft tissue surgery because of its cutting quality and availability. Diode pumped solid state Er(bium):YAG laser systems promise a higher cutting efficiency and minor thermal damages. The aim of this study was to compare both laser systems with respect to their suitability for cutting soft tissue. Methods: A setup was realized which enables comparable experiments with the clinical CO2 laser (AcuPulse 40ST DUO, Lumenis) and the Er:YAG laser system (DPM 40, Pantec Biosolutions AG). Fresh mucosal samples of porcine tongues were used to determine the influence of laser power and sample velocity on cutting depth and thermal damage width for both lasers. In addition, for the Er:YAG laser, the influence of the pulse repetition rate was examined additionally. For analysis, images of histological sections were taken. Results: In all experiments, the Er:YAG laser shows a significantly higher cutting depth (P < 0.0001) and less thermal damage width (P < 0.0001) than the CO2 laser. For example, at an average power of 7.7 W and a sample velocity of 5 mm/s the Er:YAG laser shows a mean cutting depth of 1.1 mm compared to the CO2 laser with 500 µm. While the Er:YAG laser shows a mean thermal damage width of 70 µm compared to 120 µm. Furthermore, the Er:YAG enables the adjustment of the cutting depth and thermal damage width by varying the irradiation parameters. A decrease of the repetition rate leads to a reduction of thermal damage. For example, a repetition rate of 100 Hz results in a thermal damage width of 46 µm compared to 87 µm at 800 Hz at an average power of 7.7 W and a cutting velocity = 5 mm/s while a homogenous cutting quality can be achieved. Conclusions: In conclusion, the results of these ex vivo experiments demonstrate significant advantages of the diode pumped Er:YAG laser system for soft tissue ablation compared to the CO2 laser, in particular regarding cutting efficiency and thermal damage width.

2.
Cancers (Basel) ; 13(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808621

RESUMO

Background. In the past few years, surgical robots have recently entered the medical field, particularly in urology, gynecology, and general surgery. However, the clinical effectiveness and safety of robot-assisted surgery (RAS) in the field of head and neck surgery has not been clearly established. In this review, we evaluate to what extent RAS can potentially be applied in head and neck surgery, in which fields it is already daily routine and what advantages can be seen in comparison to conventional surgery. Data sources. For this purpose, we conducted a systematic review of trials published between 2000 and 2021, as well as currently ongoing trials registered in clinicaltrials.gov. The results were structured according to anatomical regions, for the topics "Costs," "current clinical trials," and "robotic research" we added separate sections for the sake of clarity. Results. Our findings show a lack of large-scale systematic randomized trials on the use of robots in head and neck surgery. Most studies include small case series or lack a control arm which enables a comparison with established standard procedures. Conclusion. The question of financial reimbursement is still not answered and the systems on the market still require some specific improvements for the use in head and neck surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...